
13. Factorial ANOVA

Over the course of the last few chapters we have done quite a lot. We have looked at statistical
tests you can use when you have one nominal predictor variable with two groups (e.g. the t-test,
Chapter 10) or with three or more groups (e.g. one-way ANOVA, Chapter 12). The chapter on
regression (Chapter 11) introduced a powerful new idea, that is building statistical models with multiple
continuous predictor variables used to explain a single outcome variable. For instance, a regression
model could be used to predict the number of errors a student makes in a reading comprehension test
based on the number of hours they studied for the test and their score on a standardised IQ test.

The goal in this chapter is to extend the idea of using multiple predictors into the ANOVA frame-
work. For instance, suppose we were interested in using the reading comprehension test to measure
student achievements in three different schools, and we suspect that girls and boys are developing at
different rates (and so would be expected to have different performance on average). Each student
is classified in two different ways: on the basis of their gender and on the basis of their school. What
we’d like to do is analyse the reading comprehension scores in terms of both of these grouping vari-
ables. The tool for doing so is generically referred to as factorial ANOVA. However, since we have
two grouping variables, we sometimes refer to the analysis as a two-way ANOVA, in contrast to the
one-way ANOVAs that we ran in Chapter 12.

13.1

Factorial ANOVA 1: balanced designs, no interactions

When we discussed analysis of variance in Chapter 12, we assumed a fairly simple experimental design.
Each person is in one of several groups and we want to know whether these groups have different
mean scores on some outcome variable. In this section, I’ll discuss a broader class of experimental
designs known as factorial designs, in which we have more than one grouping variable. I gave one
example of how this kind of design might arise above. Another example appears in Chapter 12 in
which we were looking at the effect of different drugs on the mood.gain experienced by each person.
In that chapter we did find a significant effect of drug, but at the end of the chapter we also ran
an analysis to see if there was an effect of therapy. We didn’t find one, but there’s something a bit
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worrying about trying to run two separate analyses trying to predict the same outcome. Maybe there
actually is an effect of therapy on mood gain, but we couldn’t find it because it was being “hidden”
by the effect of drug? In other words, we’re going to want to run a single analysis that includes both
drug and therapy as predictors. For this analysis each person is cross-classified by the drug they were
given (a factor with 3 levels) and what therapy they received (a factor with 2 levels). We refer to this
as a 3ˆ 2 factorial design.

If we cross-tabulate drug by therapy, using the ‘Frequencies’ - ‘Contingency Tables’ analysis in
JASP (see Section 9.2), we get the table shown in Figure 13.1

Figure 13.1: JASP contingency table of drug by therapy
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As you can see, not only do we have participants corresponding to all possible combinations of
the two factors, indicating that our design is completely crossed, it turns out that there are an equal
number of people in each group. In other words, we have a balanced design. In this section I’ll
talk about how to analyse data from balanced designs, since this is the simplest case. The story for
unbalanced designs is quite tedious, so we’ll put it to one side for the moment.

13.1.1 What hypotheses are we testing?

Like one-way ANOVA, factorial ANOVA is a tool for testing certain types of hypotheses about
population means. So a sensible place to start would be to be explicit about what our hypotheses
actually are. However, before we can even get to that point, it’s really useful to have some clean
and simple notation to describe the population means. Because of the fact that observations are
cross-classified in terms of two different factors, there are quite a lot of different means that one
might be interested in. To see this, let’s start by thinking about all the different sample means that
we can calculate for this kind of design. Firstly, there’s the obvious idea that we might be interested
in this list of group means:
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drug therapy mood.gain
placebo no.therapy 0.300000
anxifree no.therapy 0.400000
joyzepam no.therapy 1.466667
placebo CBT 0.600000
anxifree CBT 1.033333
joyzepam CBT 1.500000

Now, this output shows a list of the group means for all possible combinations of the two factors
(e.g., people who received the placebo and no therapy, people who received the placebo while getting
CBT, etc.). It is helpful to organise all these numbers, plus the row and column means and the overall
mean, into a single table which looks like this:

no therapy CBT total
placebo 0.30 0.60 0.45
anxifree 0.40 1.03 0.72
joyzepam 1.47 1.50 1.48
total 0.72 1.04 0.88

Now, each of these different means is of course a sample statistic. It’s a quantity that pertains
to the specific observations that we’ve made during our study. What we want to make inferences
about are the corresponding population parameters. That is, the true means as they exist within some
broader population. Those population means can also be organised into a similar table, but we’ll need
a little mathematical notation to do so. As usual, I’ll use the symbol µ to denote a population mean.
However, because there are lots of different means, I’ll need to use subscripts to distinguish between
them.

Here’s how the notation works. Our table is defined in terms of two factors. Each row corresponds
to a different level of Factor A (in this case drug), and each column corresponds to a different level of
Factor B (in this case therapy). If we let R denote the number of rows in the table, and C denote the
number of columns, we can refer to this as an RˆC factorial ANOVA. In this case R “ 3 and C “ 2.
We’ll use lowercase letters to refer to specific rows and columns, so µrc refers to the population mean
associated with the r th level of Factor A (i.e. row number r) and the cth level of Factor B (column
number c).1 So the population means are now written like this:

no therapy CBT total
placebo µ11 µ12
anxifree µ21 µ22
joyzepam µ31 µ32
total

1The nice thing about the subscript notation is that it generalises nicely. If our experiment had involved a third factor,
then we could just add a third subscript. In principle, the notation extends to as many factors as you might care to
include, but in this book we’ll rarely consider analyses involving more than two factors, and never more than three.
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Okay, what about the remaining entries? For instance, how should we describe the average mood gain
across the entire (hypothetical) population of people who might be given Joyzepam in an experiment
like this, regardless of whether they were in CBT? We use the “dot” notation to express this. In
the case of Joyzepam, notice that we’re talking about the mean associated with the third row in the
table. That is, we’re averaging across two cell means (i.e., µ31 and µ32). The result of this averaging
is referred to as a marginal mean, and would be denoted µ3. in this case. The marginal mean for
CBT corresponds to the population mean associated with the second column in the table, so we use
the notation µ.2 to describe it. The grand mean is denoted µ.. because it is the mean obtained by
averaging (marginalising2) over both. So our full table of population means can be written down like
this:

no therapy CBT total
placebo µ11 µ12 µ1.
anxifree µ21 µ22 µ2.
joyzepam µ31 µ32 µ3.
total µ.1 µ.2 µ..

Now that we have this notation, it is straightforward to formulate and express some hypotheses.
Let’s suppose that the goal is to find out two things. First, does the choice of drug have any effect on
mood? And second, does CBT have any effect on mood? These aren’t the only hypotheses that we
could formulate of course, and we’ll see a really important example of a different kind of hypothesis in
Section 13.2, but these are the two simplest hypotheses to test, and so we’ll start there. Consider the
first test. If the drug has no effect then we would expect all of the row means to be identical, right?
So that’s our null hypothesis. On the other hand, if the drug does matter then we should expect these
row means to be different. Formally, we write down our null and alternative hypotheses in terms of
the equality of marginal means:

Null hypothesis, H0: row means are the same, i.e., µ1. “ µ2. “ µ3.
Alternative hypothesis, H1: at least one row mean is different.

It’s worth noting that these are exactly the same statistical hypotheses that we formed when we
ran a one-way ANOVA on these data back in Chapter 12. Back then I used the notation µP to refer
to the mean mood gain for the placebo group, with µA and µJ corresponding to the group means for
the two drugs, and the null hypothesis was µP “ µA “ µJ . So we’re actually talking about the same
hypothesis, it’s just that the more complicated ANOVA requires more careful notation due to the
presence of multiple grouping variables, so we’re now referring to this hypothesis as µ1. “ µ2. “ µ3..
However, as we’ll see shortly, although the hypothesis is identical the test of that hypothesis is subtly
different due to the fact that we’re now acknowledging the existence of the second grouping variable.

2Technically, marginalising isn’t quite identical to a regular mean. It’s a weighted average where you take into account
the frequency of the different events that you’re averaging over. However, in a balanced design, all of our cell frequencies
are equal by definition so the two are equivalent. We’ll discuss unbalanced designs later, and when we do so you’ll see
that all of our calculations become a real headache. But let’s ignore this for now.
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Speaking of the other grouping variable, you won’t be surprised to discover that our second hy-
pothesis test is formulated the same way. However, since we’re talking about the psychological therapy
rather than drugs our null hypothesis now corresponds to the equality of the column means:

Null hypothesis, H0: column means are the same, i.e., µ.1 “ µ.2
Alternative hypothesis, H1: column means are different, i.e., µ.1 ‰ µ.2

13.1.2 Running the analysis in JASP

The null and alternative hypotheses that I described in the last section should seem awfully familiar.
They’re basically the same as the hypotheses that we were testing in our simpler one-way ANOVAs in
Chapter 12. So you’re probably expecting that the hypothesis tests that are used in factorial ANOVA
will be essentially the same as the F -test from Chapter 12. You’re expecting to see references to
sums of squares (SS), mean squares (MS), degrees of freedom (df), and finally an F -statistic that we
can convert into a p-value, right? Well, you’re absolutely and completely right. So much so that I’m
going to depart from my usual approach. Throughout this book, I’ve generally taken the approach
of describing the logic (and to an extent the mathematics) that underpins a particular analysis first
and only then introducing the analysis in JASP. This time I’m going to do it the other way around
and show you how to do it in JASP first. The reason for doing this is that I want to highlight the
similarities between the simple one-way ANOVA tool that we discussed in Chapter 12, and the more
complicated approach that we’re going to use in this chapter.

If the data you’re trying to analyse correspond to a balanced factorial design then running your
analysis of variance is easy. To see how easy it is, let’s start by reproducing the original analysis from
Chapter 12. In case you’ve forgotten, for that analysis we were using only a single factor (i.e., drug)
to predict our outcome variable (i.e., mood.gain), and we got the results shown in Figure 13.2.

Figure 13.2: JASP one way ANOVA of mood.gain by drug
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now, suppose I’m also curious to find out if therapy has a relationship to mood.gain. In light
of what we’ve seen from our discussion of multiple regression in Chapter 11, you probably won’t be
surprised that all we have to do is add therapy as a second ‘Fixed Factor’ in the analysis, see Figure
13.3.
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Figure 13.3: JASP two way ANOVA of mood.gain by drug and therapy
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This output is pretty simple to read too. The first row of the table reports a between-group sum
of squares (SS) value associated with the drug factor, along with a corresponding between-group df
value. It also calculates a mean square value (MS), an F -statistic and a p-value. There is also a row
corresponding to the therapy factor and a row corresponding to the residuals (i.e., the within groups
variation).

Not only are all of the individual quantities pretty familiar, the relationships between these different
quantities has remained unchanged, just like we saw with the original one-way ANOVA. Note that the
mean square value is calculated by dividing SS by the corresponding df . That is, it’s still true that

MS “ SS
df

regardless of whether we’re talking about drug, therapy or the residuals. To see this, let’s not worry
about how the sums of squares values are calculated. Instead, let’s take it on faith that JASP has
calculated the SS values correctly, and try to verify that all the rest of the numbers make sense. First,
note that for the drug factor, we divide 3.453 by 2 and end up with a mean square value of 1.727. For
the therapy factor, there’s only 1 degree of freedom, so our calculations are even simpler: dividing
0.467 (the SS value) by 1 gives us an answer of 0.467 (the MS value).

Turning to the F statistics and the p values, notice that we have two of each; one corresponding
to the drug factor and the other corresponding to the therapy factor. Regardless of which one we’re
talking about, the F statistic is calculated by dividing the mean square value associated with the factor
by the mean square value associated with the residuals. If we use “A” as shorthand notation to refer
to the first factor (factor A; in this case drug) and “R” as shorthand notation to refer to the residuals,
then the F statistic associated with factor A is denoted FA, and is calculated as follows:

FA “ MSA
MSR

and an equivalent formula exists for factor B (i.e., therapy). Note that this use of “R” to refer to
residuals is a bit awkward, since we also used the letter R to refer to the number of rows in the table,
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but I’m only going to use “R” to mean residuals in the context of SSR and MSR, so hopefully this
shouldn’t be confusing. Anyway, to apply this formula to the drugs factor we take the mean square
of 1.727 and divide it by the residual mean square value of 0.066, which gives us an F -statistic of
26.149. The corresponding calculation for the therapy variable would be to divide 0.467 by 0.066
which gives 7.076 as the F -statistic. Not surprisingly, of course, these are the same values that JASP
has reported in the ANOVA table above.

Also in the ANOVA table is the calculation of the p values. Once again, there is nothing new
here. For each of our two factors what we’re trying to do is test the null hypothesis that there is no
relationship between the factor and the outcome variable (I’ll be a bit more precise about this later
on). To that end, we’ve (apparently) followed a similar strategy to what we did in the one way ANOVA
and have calculated an F -statistic for each of these hypotheses. To convert these to p values, all we
need to do is note that the sampling distribution for the F statistic under the null hypothesis (that
the factor in question is irrelevant) is an F distribution. Also note that the two degrees of freedom
values are those corresponding to the factor and those corresponding to the residuals. For the drug
factor we’re talking about an F distribution with 2 and 14 degrees of freedom (I’ll discuss degrees of
freedom in more detail later). In contrast, for the therapy factor the sampling distribution is F with
1 and 14 degrees of freedom.

At this point, I hope you can see that the ANOVA table for this more complicated factorial
analysis should be read in much the same way as the ANOVA table for the simpler one way analysis.
In short, it’s telling us that the factorial ANOVA for our 3ˆ2 design found a significant effect of drug
(F2,14 “ 26.15, p † .001) as well as a significant effect of therapy (F1,14 “ 7.08, p “ .02). Or, to use
the more technically correct terminology, we would say that there are two main effects of drug and
therapy. At the moment, it probably seems a bit redundant to refer to these as “main” effects, but it
actually does make sense. Later on, we’re going to want to talk about the possibility of “interactions”
between the two factors, and so we generally make a distinction between main effects and interaction
effects.

13.1.3 How are the sum of squares calculated?

In the previous section I had two goals. Firstly, to show you that the JASP method needed to do
factorial ANOVA is pretty much the same as what we used for a one way ANOVA. The only difference
is the addition of a second factor. Secondly, I wanted to show you what the ANOVA table looks like
in this case, so that you can see from the outset that the basic logic and structure behind factorial
ANOVA is the same as that which underpins one way ANOVA. Try to hold onto that feeling. It’s
genuinely true, insofar as factorial ANOVA is built in more or less the same way as the simpler one-way
ANOVA model. It’s just that this feeling of familiarity starts to evaporate once you start digging into
the details. Traditionally, this comforting sensation is replaced by an urge to hurl abuse at the authors
of statistics textbooks.

Okay, let’s start by looking at some of those details. The explanation that I gave in the last section
illustrates the fact that the hypothesis tests for the main effects (of drug and therapy in this case)
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are F -tests, but what it doesn’t do is show you how the sum of squares (SS) values are calculated.
Nor does it tell you explicitly how to calculate degrees of freedom (df values) though that’s a simple
thing by comparison. Let’s assume for now that we have only two predictor variables, Factor A and
Factor B. If we use Y to refer to the outcome variable, then we would use Yrci to refer to the outcome
associated with the i-th member of group rc (i.e., level/row r for Factor A and level/column c for
Factor B). Thus, if we use ¯Y to refer to a sample mean, we can use the same notation as before to
refer to group means, marginal means and grand means. That is, ¯Yrc is the sample mean associated
with the r th level of Factor A and the cth level of Factor B, ¯Yr.would be the marginal mean for the
r th level of Factor A, ¯Y.c would be the marginal mean for the cth level of Factor B, and ¯Y.. is the
grand mean. In other words, our sample means can be organised into the same table as the population
means. For our clinical trial data, that table looks like this:

no therapy CBT total

placebo ¯Y11 ¯Y12 ¯Y1.

anxifree ¯Y21 ¯Y22 ¯Y2.

joyzepam ¯Y31 ¯Y32 ¯Y3.

total ¯Y.1 ¯Y.2 ¯Y..

And if we look at the sample means that I showed earlier, we have ¯Y11 “ 0.30, ¯Y12 “ 0.60 etc. In our
clinical trial example, the drugs factor has 3 levels and the therapy factor has 2 levels, and so what
we’re trying to run is a 3 ˆ 2 factorial ANOVA. However, we’ll be a little more general and say that
Factor A (the row factor) has R levels and Factor B (the column factor) has C levels, and so what
we’re runnning here is an R ˆ C factorial ANOVA.

Now that we’ve got our notation straight, we can compute the sum of squares values for each of
the two factors in a relatively familiar way. For Factor A, our between group sum of squares is
calculated by assessing the extent to which the (row) marginal means ¯Y1., ¯Y2. etc, are different from
the grand mean ¯Y... We do this in the same way that we did for one-way ANOVA: calculate the sum
of squared difference between the ¯Yi . values and the ¯Y.. values. Specifically, if there are N people in
each group, then we calculate this

SSA “ pN ˆ Cq
Rÿ

r“1

`
¯Yr. ´ ¯Y..

˘2

As with one-way ANOVA, the most interestinga part of this formula is the
`
¯Yr. ´ ¯Y..

˘2 bit, which
corresponds to the squared deviation associated with level r . All that this formula does is calculate
this squared deviation for all R levels of the factor, add them up, and then multiply the result by
N ˆ C. The reason for this last part is that there are multiple cells in our design that have level r
on Factor A. In fact, there are C of them, one corresponding to each possible level of Factor B! For
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instance, in our example there are two different cells in the design corresponding to the anxifree
drug: one for people with no.therapy and one for the CBT group. Not only that, within each of
these cells there are N observations. So, if we want to convert our SS value into a quantity that
calculates the between-groups sum of squares on a “per observation” basis, we have to multiply by
N ˆ C. The formula for factor B is of course the same thing, just with some subscripts shuffled
around

SSB “ pN ˆ Rq
Cÿ

c“1

`
¯Y.c ´ ¯Y..

˘2

Now that we have these formulas we can check them against the JASP output from the earlier
section. Once again, a dedicated spreadsheet programme is helpful for these sorts of calculations.

First, let’s calculate the sum of squares associated with the main effect of drug. There are a
total of N “ 3 people in each group and C “ 2 different types of therapy. Or, to put it another
way, there are 3ˆ 2 “ 6 people who received any particular drug. When we do these calculations in
a spreadsheet programme, we get a value of 3.45 for the sum of squares associated with the main
effect of drug. Not surprisingly, this is the same number that you get when you look up the SS value
for the drugs factor in the ANOVA table that I presented earlier, in Figure 13.3.

We can repeat the same kind of calculation for the effect of therapy. Again there are N “ 3
people in each group, but since there are R “ 3 different drugs, this time around we note that there
are 3 ˆ 3 “ 9 people who received CBT and an additional 9 people who received the placebo. So
our calculation in this case gives us a value of 0.47 for the sum of squares associated with the main
effect of therapy. Once again, we are not surprised to see that our calculations are identical to the
ANOVA output in Figure 13.3.

So that’s how you calculate the SS values for the two main effects. These SS values are
analogous to the between-group sum of squares values that we calculated when doing one-way
ANOVA in Chapter 12. However, it’s not a good idea to think of them as between-groups SS
values anymore, just because we have two different grouping variables and it’s easy to get confused.
In order to construct an F test, however, we also need to calculate the within-groups sum of
squares. In keeping with the terminology that we used in the regression chapter (Chapter 11) and
the terminology that JASP uses when printing out the ANOVA table, I’ll start referring to the
within-groups SS value as the residual sum of squares SSR.

The easiest way to think about the residual SS values in this context, I think, is to think of it
as the leftover variation in the outcome variable after you take into account the differences in the
marginal means (i.e., after you remove SSA and SSB). What I mean by that is we can start by
calculating the total sum of squares, which I’ll label SST . The formula for this is pretty much the
same as it was for one-way ANOVA. We take the difference between each observation Yrci and the
grand mean ¯Y.., square the differences, and add them all up

SST “
Rÿ

r“1

Cÿ

c“1

Nÿ

i“1

`
Yrci ´ ¯Y..

˘2
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The “triple summation” here looks more complicated than it is. In the first two summations, we’re
summing across all levels of Factor A (i.e., over all possible rows r in our table) and across all levels
of Factor B (i.e., all possible columns c). Each rc combination corresponds to a single group and
each group contains N people, so we have to sum across all those people (i.e., all i values) too. In
other words, all we’re doing here is summing across all observations in the data set (i.e., all possible
rci combinations).

At this point, we know the total variability of the outcome variable SST , and we know how much
of that variability can be attributed to Factor A (SSA) and how much of it can be attributed to
Factor B (SSB). The residual sum of squares is thus defined to be the variability in Y that can’t be
attributed to either of our two factors. In other words

SSR “ SST ´ pSSA ` SSBq

Of course, there is a formula that you can use to calculate the residual SS directly, but I think that
it makes more conceptual sense to think of it like this. The whole point of calling it a residual is that
it’s the leftover variation, and the formula above makes that clear. I should also note that, in keeping
with the terminology used in the regression chapter, it is commonplace to refer to SSA ` SSB as
the variance attributable to the “ANOVA model”, denoted SSM , and so we often say that the total
sum of squares is equal to the model sum of squares plus the residual sum of squares. Later on in
this chapter we’ll see that this isn’t just a surface similarity: ANOVA and regression are actually the
same thing under the hood.

In any case, it’s probably worth taking a moment to check that we can calculate SSR using this
formula and verify that we do obtain the same answer that JASP produces in its ANOVA table.
Again, the calculations are pretty straightforward when done in a spreadsheet. We can calculate the
total SS using the formulas above (getting an answer of total SS = 4.85) and then the residual SS
( = 0.92). Yet again, we get the same answer.

aEnglish translation: “least tedious”.

13.1.4 What are our degrees of freedom?

The degrees of freedom are calculated in much the same way as for one-way ANOVA. For any
given factor, the degrees of freedom is equal to the number of levels minus 1 (i.e., R´ 1 for the row
variable Factor A, and C ´ 1 for the column variable Factor B). So, for the drugs factor we obtain
df “ 2, and for the therapy factor we obtain df “ 1. Later on, when we discuss the interpretation
of ANOVA as a regression model (see Section 13.6), I’ll give a clearer statement of how we arrive
at this number. But for the moment we can use the simple definition of degrees of freedom, namely
that the degrees of freedom equals the number of quantities that are observed, minus the number of
constraints. So, for the drugs factor, we observe 3 separate group means, but these are constrained
by 1 grand mean, and therefore the degrees of freedom is 2. For the residuals, the logic is similar,
but not quite the same. The total number of observations in our experiment is 18. The constraints
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correspond to 1 grand mean, the 2 additional group means that the drug factor introduces, and the
1 additional group mean that the the therapy factor introduces, and so our degrees of freedom is 14.
As a formula, this is N ´ 1´ pR ´ 1q ´ pC ´ 1q, which simplifies to N ´ R ´ C ` 1.

13.1.5 Factorial ANOVA versus one-way ANOVAs

Now that we’ve seen how a factorial ANOVA works, it’s worth taking a moment to compare it to
the results of the one way analyses, because this will give us a really good sense of why it’s a good
idea to run the factorial ANOVA. In Chapter 12, I ran a one-way ANOVA that looked to see if there
are any differences between drugs, and a second one-way ANOVA to see if there were any differences
between therapies. As we saw in Section 13.1.1, the null and alternative hypotheses tested by the
one-way ANOVAs are in fact identical to the hypotheses tested by the factorial ANOVA. Looking even
more carefully at the ANOVA tables, we can see that the sum of squares associated with the factors
are identical in the two different analyses (3.45 for drug and 0.92 for therapy), as are the degrees of
freedom (2 for drug, 1 for therapy). But they don’t give the same answers! Most notably, when we
ran the one-way ANOVA for therapy in Section 12.10 we didn’t find a significant effect (the p-value
was .21). However, when we look at the main effect of therapy within the context of the two-way
ANOVA, we do get a significant effect (p “ .019). The two analyses are clearly not the same.

Why does that happen? The answer lies in understanding how the residuals are calculated. Recall
that the whole idea behind an F -test is to compare the variability that can be attributed to a particular
factor with the variability that cannot be accounted for (the residuals). If you run a one-way ANOVA
for therapy, and therefore ignore the effect of drug, the ANOVA will end up dumping all of the drug-
induced variability into the residuals! This has the effect of making the data look more noisy than
they really are, and the effect of therapy which is correctly found to be significant in the two-way
ANOVA now becomes non-significant. If we ignore something that actually matters (e.g., drug) when
trying to assess the contribution of something else (e.g., therapy) then our analysis will be distorted.
Of course, it’s perfectly okay to ignore variables that are genuinely irrelevant to the phenomenon of
interest. If we had recorded the colour of the walls, and that turned out to be a non-significant
factor in a three-way ANOVA, it would be perfectly okay to disregard it and just report the simpler
two-way ANOVA that doesn’t include this irrelevant factor. What you shouldn’t do is drop variables
that actually make a difference!

13.1.6 What kinds of outcomes does this analysis capture?

The ANOVA model that we’ve been talking about so far covers a range of different patterns that
we might observe in our data. For instance, in a two-way ANOVA design there are four possibilities:
(a) only Factor A matters, (b) only Factor B matters, (c) both A and B matter, and (d) neither A
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Figure 13.4: The four different outcomes for a 2 ˆ 2 ANOVA when no interactions are present. In
panel (a) we see a main effect of Factor A and no effect of Factor B. Panel (b) shows a main effect
of Factor B but no effect of Factor A. Panel (c) shows main effects of both Factor A and Factor B.
Finally, panel (d) shows no effect of either factor.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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nor B matters. An example of each of these four possibilities is plotted in Figure 13.4.

13.2

Factorial ANOVA 2: balanced designs, interactions allowed

The four patterns of data shown in Figure 13.4 are all quite realistic. There are a great many data
sets that produce exactly those patterns. However, they are not the whole story and the ANOVA
model that we have been talking about up to this point is not sufficient to fully account for a table
of group means. Why not? Well, so far we have the ability to talk about the idea that drugs can
influence mood, and therapy can influence mood, but no way of talking about the possibility of an
interaction between the two. An interaction between A and B is said to occur whenever the effect
of Factor A is different, depending on which level of Factor B we’re talking about. Several examples
of an interaction effect with the context of a 2ˆ2 ANOVA are shown in Figure 13.5. To give a more
concrete example, suppose that the operation of Anxifree and Joyzepam is governed by quite different
physiological mechanisms. One consequence of this is that while Joyzepam has more or less the same
effect on mood regardless of whether one is in therapy, Anxifree is actually much more effective when
administered in conjunction with CBT. The ANOVA that we developed in the previous section does
not capture this idea. To get some idea of whether an interaction is actually happening here, it helps
to plot the various group means. In JASP this is done via the ANOVA ‘Descriptives Plots’ option
- just move drug across into the ‘Horizontal axis’ box, and move therapy across into the ‘Separate
Lines’ box. This should look something like Figure 13.6. Our main concern relates to the fact that
the two lines aren’t parallel. The effect of CBT (difference between line with solid dots and line with
open dots) when the drug is Joyzepam (middle) appears to be near zero, even smaller than the effect
of CBT when a placebo is used (right side). However, when Anxifree is administered, the effect of
CBT is larger than the placebo (left side). Is this effect real, or is this just random variation due to
chance? Our original ANOVA cannot answer this question, because we make no allowances for the
idea that interactions even exist! In this section, we’ll fix this problem.

13.2.1 What exactly is an interaction effect?

The key idea that we’re going to introduce in this section is that of an interaction effect. In the ANOVA
model we have looked at so far there are only two factors involved in our model (i.e., drug and therapy).
But when we add an interaction we add a new component to the model: the combination of drug and
therapy. Intuitively, the idea behind an interaction effect is fairly simple. It just means that the effect
of Factor A is different, depending on which level of Factor B we’re talking about. But what does that
actually mean in terms of our data? The plot in Figure 13.5 depicts several different patterns that,
although quite different to each other, would all count as an interaction effect. So it’s not entirely
straightforward to translate this qualitative idea into something mathematical that a statistician can
work with.
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Figure 13.5: Qualitatively different interactions for a 2ˆ 2 ANOVA
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 13.6: JASP screen showing a ‘Descriptives Plot’ in ANOVA using the clinical trial data
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As a consequence, the way that the idea of an interaction effect is formalised in terms of null and
alternative hypotheses is slightly difficult, and I’m guessing that a lot of readers of this book probably
won’t be all that interested. Even so, I’ll try to give the basic idea here.

To start with, we need to be a little more explicit about our main effects. Consider the main
effect of Factor A (drug in our running example). We originally formulated this in terms of the null
hypothesis that the two marginal means µr. are all equal to each other. Obviously, if all of these are
equal to each other, then they must also be equal to the grand mean µ.. as well, right? So what we
can do is define the effect of Factor A at level r to be equal to the difference between the marginal
mean µr. and the grand mean µ... Let’s denote this effect by ↵r , and note that

↵r “ µr. ´ µ..

Now, by definition all of the ↵r values must sum to zero, for the same reason that the average of
the marginal means µr. must be the grand mean µ... We can similarly define the effect of Factor B
at level i to be the difference between the column marginal mean µ.c and the grand mean µ..

�c “ µ.c ´ µ..
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and once again, these �c values must sum to zero. The reason that statisticians sometimes like to
talk about the main effects in terms of these ↵r and �c values is that it allows them to be precise
about what it means to say that there is no interaction effect. If there is no interaction at all, then
these ↵r and �c values will perfectly describe the group means µrc . Specifically, it means that

µrc “ µ.. ` ↵r ` �c

That is, there’s nothing special about the group means that you couldn’t predict perfectly by knowing
all the marginal means. And that’s our null hypothesis, right there. The alternative hypothesis is
that

µrc ‰ µ.. ` ↵r ` �c
for at least one group rc in our table. However, statisticians often like to write this slightly differently.
They’ll usually define the specific interaction associated with group rc to be some number, awkwardly
referred to as p↵�qrc , and then they will say that the alternative hypothesis is that

µrc “ µ.. ` ↵r ` �c ` p↵�qrc

where p↵�qrc is non-zero for at least one group. This notation is kind of ugly to look at, but it is
handy as we’ll see in the next section when discussing how to calculate the sum of squares.

13.2.2 Calculating sums of squares for the interaction

How should we calculate the sum of squares for the interaction terms, SSA:B? Well, first off,
it helps to notice how the previous section defined the interaction effect in terms of the extent to
which the actual group means differ from what you’d expect by just looking at the marginal means.
Of course, all of those formulas refer to population parameters rather than sample statistics, so we
don’t actually know what they are. However, we can estimate them by using sample means in place
of population means. So for Factor A, a good way to estimate the main effect at level r is as the
difference between the sample marginal mean ¯Yrc and the sample grand mean ¯Y... That is, we would
use this as our estimate of the effect

↵̂r “ ¯Yr. ´ ¯Y..
Similarly, our estimate of the main effect of Factor B at level c can be defined as follows

ˆ�c “ ¯Y.c ´ ¯Y..

Now, if you go back to the formulas that I used to describe the SS values for the two main effects,
you’ll notice that these effect terms are exactly the quantities that we were squaring and summing!
So, what’s the analog of this for interaction terms? The answer to this can be found by first
rearranging the formula for the group means µrc under the alternative hypothesis, so that we get
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this

p↵�qrc “ µrc ´ µ.. ´ ↵r ´ �c
“ µrc ´ µ.. ´ pµr. ´ µ..q ´ pµ.c ´ µ..q
“ µrc ´ µr. ´ µ.c ` µ..

So, once again if we substitute our sample statistics in place of the population means, we get the
following as our estimate of the interaction effect for group rc , which is

ˆp↵�qrc “ ¯Yrc ´ ¯Yr. ´ ¯Y.c ` ¯Y..

Now all we have to do is sum all of these estimates across all R levels of Factor A and all C levels of
Factor B, and we obtain the following formula for the sum of squares associated with the interaction
as a whole

SSA:B “ N
Rÿ

r“1

Cÿ

c“1

`
¯Yrc ´ ¯Yr. ´ ¯Y.c ` ¯Y..

˘2

where we multiply by N because there are N observations in each of the groups, and we want our SS
values to reflect the variation among observations accounted for by the interaction, not the variation
among groups.

Now that we have a formula for calculating SSA:B, it’s important to recognise that the interaction
term is part of the model (of course), so the total sum of squares associated with the model, SSM ,
is now equal to the sum of the three relevant SS values, SSA ` SSB ` SSA:B. The residual sum of
squares SSR is still defined as the leftover variation, namely SST ´ SSM , but now that we have the
interaction term this becomes

SSR “ SST ´ pSSA ` SSB ` SSA:Bq

As a consequence, the residual sum of squares SSR will be smaller than in our original ANOVA that
didn’t include interactions.

13.2.3 Degrees of freedom for the interaction

Calculating the degrees of freedom for the interaction is, once again, slightly trickier than the
corresponding calculation for the main effects. To start with, let’s think about the ANOVA model as
a whole. Once we include interaction effects in the model we’re allowing every single group to have
a unique mean, µrc . For an R ˆ C factorial ANOVA, this means that there are R ˆ C quantities of
interest in the model and only the one constraint: all of the group means need to average out to the
grand mean. So the model as a whole needs to have pR ˆ Cq ´ 1 degrees of freedom. But the main
effect of Factor A has R ´ 1 degrees of freedom, and the main effect of Factor B has C ´ 1 degrees
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of freedom. This means that the degrees of freedom associated with the interaction is

dfA:B “ pR ˆ C ´ 1q ´ pR ´ 1q ´ pC ´ 1q
“ RC ´ R ´ C ` 1
“ pR ´ 1qpC ´ 1q

which is just the product of the degrees of freedom associated with the row factor and the column
factor.

What about the residual degrees of freedom? Because we’ve added interaction terms which absorb
some degrees of freedom, there are fewer residual degrees of freedom left over. Specifically, note that
if the model with interaction has a total of pR ˆ Cq ´ 1, and there are N observations in your data
set that are constrained to satisfy 1 grand mean, your residual degrees of freedom now become
N ´ pR ˆ Cq ´ 1` 1, or just N ´ pR ˆ Cq.

13.2.4 Running the ANOVA in JASP

Adding interaction terms to the ANOVA model in JASP is straightforward. In fact it is more than
straightforward because it is the default option for ANOVA. This means that when you specify an
ANOVA with two factors, e.g. drug and therapy then the interaction component - drug*therapy -
is added automatically to the model3. When we run the ANOVA with the interaction term included,
then we get the results shown in Figure 13.7.

Figure 13.7: Results for the full factorial model, including the interaction component drug*therapy
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As it turns out, while we do have a significant main effect of drug (F2,12 “ 31.7, p † .001) and
therapy type (F1,12 “ 8.6, p “ .013), there is no significant interaction between the two (F2,12 “
2.5, p “ 0.125).

3You may have spotted this already when trying to re-create the main effects analysis in JASP that we described
earlier. For the purpose of the explanation in this book I removed the interaction component from the earlier model to
keep things clean and simple
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13.2.5 Interpreting the results

There’s a couple of very important things to consider when interpreting the results of factorial
ANOVA. First, there’s the same issue that we had with one-way ANOVA, which is that if you obtain
a significant main effect of (say) drug, it doesn’t tell you anything about which drugs are different to
one another. To find that out, you need to run additional analyses. We’ll talk about some analyses
that you can run in Sections 13.7 and 13.8. The same is true for interaction effects. Knowing that
there’s a significant interaction doesn’t tell you anything about what kind of interaction exists. Again,
you’ll need to run additional analyses.

Secondly, there’s a very peculiar interpretation issue that arises when you obtain a significant
interaction effect but no corresponding main effect. This happens sometimes. For instance, in the
crossover interaction shown in Figure 13.5a, this is exactly what you’d find. In this case, neither of
the main effects would be significant, but the interaction effect would be. This is a difficult situation
to interpret, and people often get a bit confused about it. The general advice that statisticians like to
give in this situation is that you shouldn’t pay much attention to the main effects when an interaction
is present. The reason they say this is that, although the tests of the main effects are perfectly valid
from a mathematical point of view, when there is a significant interaction effect the main effects rarely
test interesting hypotheses. Recall from Section 13.1.1 that the null hypothesis for a main effect is
that the marginal means are equal to each other, and that a marginal mean is formed by averaging
across several different groups. But if you have a significant interaction effect then you know that
the groups that comprise the marginal mean aren’t homogeneous, so it’s not really obvious why you
would even care about those marginal means.

Here’s what I mean. Again, let’s stick with a clinical example. Suppose that we had a 2ˆ2 design
comparing two different treatments for phobias (e.g., systematic desensitisation vs flooding), and two
different anxiety reducing drugs (e.g., Anxifree vs Joyzepam). Now, suppose what we found was that
Anxifree had no effect when desensitisation was the treatment, and Joyzepam had no effect when
flooding was the treatment. But both were pretty effective for the other treatment. This is a classic
crossover interaction, and what we’d find when running the ANOVA is that there is no main effect
of drug, but a significant interaction. Now, what does it actually mean to say that there’s no main
effect? Well, it means that if we average over the two different psychological treatments, then the
average effect of Anxifree and Joyzepam is the same. But why would anyone care about that? When
treating someone for phobias it is never the case that a person can be treated using an “average”
of flooding and desensitisation. That doesn’t make a lot of sense. You either get one or the other.
For one treatment one drug is effective, and for the other treatment the other drug is effective. The
interaction is the important thing and the main effect is kind of irrelevant.

This sort of thing happens a lot. The main effect are tests of marginal means, and when an
interaction is present we often find ourselves not being terribly interested in marginal means because
they imply averaging over things that the interaction tells us shouldn’t be averaged! Of course, it’s
not always the case that a main effect is meaningless when an interaction is present. Often you can
get a big main effect and a very small interaction, in which case you can still say things like “drug A
is generally more effective than drug B” (because there was a big effect of drug), but you’d need to
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modify it a bit by adding that “the difference in effectiveness was different for different psychological
treatments”. In any case, the main point here is that whenever you get a significant interaction you
should stop and think about what the main effect actually means in this context. Don’t automatically
assume that the main effect is interesting.

13.3

Effect size

The effect size calculation for a factorial ANOVA is pretty similar to those used in one way ANOVA
(see Section 12.4). Specifically, we can use ⌘2 (eta-squared) as a simple way to measure how big
the overall effect is for any particular term. As before, ⌘2 is defined by dividing the sum of squares
associated with that term by the total sum of squares. For instance, to determine the size of the main
effect of Factor A, we would use the following formula:

⌘2A “ SSA
SST

As before, this can be interpreted in much the same way as R2 in regression.4 It tells you the proportion
of variance in the outcome variable that can be accounted for by the main effect of Factor A. It is
therefore a number that ranges from 0 (no effect at all) to 1 (accounts for all of the variability in the
outcome). Moreover, the sum of all the ⌘2 values, taken across all the terms in the model, will sum
to the the total R2 for the ANOVA model. If, for instance, the ANOVA model fits perfectly (i.e.,
there is no within-groups variability at all!), the ⌘2 values will sum to 1. Of course, that rarely if ever
happens in real life.

However, when doing a factorial ANOVA, there is a second measure of effect size that people like
to report, known as partial ⌘2. The idea behind partial ⌘2 (which is sometimes denoted p⌘2 or ⌘2p) is
that, when measuring the effect size for a particular term (say, the main effect of Factor A), you want
to deliberately ignore the other effects in the model (e.g., the main effect of Factor B). That is, you
would pretend that the effect of all these other terms is zero, and then calculate what the ⌘2 value
would have been. This is actually pretty easy to calculate. All you have to do is remove the sum of
squares associated with the other terms from the denominator. In other words, if you want the partial
⌘2 for the main effect of Factor A, the denominator is just the sum of the SS values for Factor A and
the residuals

partial ⌘2A “ SSA
SSA ` SSR

This will always give you a larger number than ⌘2, which the cynic in me suspects accounts for the
popularity of partial ⌘2. And once again you get a number between 0 and 1, where 0 represents no
effect. However, it’s slightly trickier to interpret what a large partial ⌘2 value means. In particular,

4This chapter seems to be setting a new record for the number of different things that the letter R can stand for. So
far we have R referring to the software package, the number of rows in our table of means, the residuals in the model,
and now the correlation coefficient in a regression. Sorry. We clearly don’t have enough letters in the alphabet. However,
I’ve tried pretty hard to be clear on which thing R is referring to in each case.
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you can’t actually compare the partial ⌘2 values across terms! Suppose, for instance, there is no
within-groups variability at all: if so, SSR “ 0. What that means is that every term has a partial
⌘2 value of 1. But that doesn’t mean that all terms in your model are equally important, or indeed
that they are equally large. All it mean is that all terms in your model have effect sizes that are large
relative to the residual variation. It is not comparable across terms.

To see what I mean by this, it’s useful to see a concrete example. First, let’s have a look at the
effect sizes for the original ANOVA without the interaction term, from Figure 13.3:

eta.sq partial.eta.sq
drug 0.71 0.79
therapy 0.10 0.34

Looking at the ⌘2 values first, we see that drug accounts for 71% of the variance (i.e. ⌘2 “ 0.71)
in mood.gain, whereas therapy only accounts for 10%. This leaves a total of 19% of the variation
unaccounted for (i.e., the residuals constitute 19% of the variation in the outcome). Overall, this
implies that we have a very large effect5 of drug and a modest effect of therapy.

Now let’s look at the partial ⌘2 values, shown in Figure 13.3. Because the effect of therapy isn’t
all that large, controlling for it doesn’t make much of a difference, so the partial ⌘2 for drug doesn’t
increase very much, and we obtain a value of p⌘2 “ 0.79). In contrast, because the effect of drug was
very large, controlling for it makes a big difference, and so when we calculate the partial ⌘2 for therapy
you can see that it rises to p⌘2 “ 0.34. The question that we have to ask ourselves is, what do these
partial ⌘2 values actually mean? The way I generally interpret the partial ⌘2 for the main effect of
Factor A is to interpret it as a statement about a hypothetical experiment in which only Factor A was
being varied. So, even though in this experiment we varied both A and B, we can easily imagine an
experiment in which only Factor A was varied, and the partial ⌘2 statistic tells you how much of the
variance in the outcome variable you would expect to see accounted for in that experiment. However,
it should be noted that this interpretation, like many things associated with main effects, doesn’t make
a lot of sense when there is a large and significant interaction effect.

Speaking of interaction effects, here’s what we get when we calculate the effect sizes for the model
that includes the interaction term, as in Figure 13.7. To get these in JASP, simply select ‘Additional
Options’ - ‘Estimates of effect size’, and choose the measures you want. As you can see, the ⌘2

values for the main effects don’t change, but the partial ⌘2 values do:

eta.sq partial.eta.sq
drug 0.71 0.84
therapy 0.10 0.42
drug*therapy 0.06 0.29

5Implausibly large, I would think. The artificiality of this data set is really starting to show!
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13.3.1 Estimated group means

In many situations you will find yourself wanting to report estimates of all the group means based
on the results of your ANOVA, as well as confidence intervals associated with them. You can use
the ‘Additional Options’ - ‘Marginal Means’ section in the JASP ANOVA analysis to do this, as in
Figure 13.8. Just move the interaction term drug*therapy into the action box. If the ANOVA that
you have run is a saturated model (i.e., contains all possible main effects and all possible interaction
effects) then the estimates of the group means are actually identical to the sample means, but
importantly, the confidence intervals will use a pooled estimate of the standard errors rather than use
a separate one for each group.

Figure 13.8: JASP screenshot showing the marginal means for the saturated model, i.e. including the
interaction component, with the clinicaltrial data set
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the output we see that the estimated mean mood gain for the placebo group with no therapy
was 0.300, with a 95% confidence interval from 0.006 to 0.594. Note that these are NOT the same
confidence intervals that you would get if you calculated them separately for each group, because
of the fact that the ANOVA model assumes homogeneity of variance and therefore uses a pooled
estimate of the standard deviation.
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13.4

Assumption checking

As with one-way ANOVA, the key assumptions of factorial ANOVA are homogeneity of variance
(all groups have the same standard deviation), normality of the residuals, and independence of the
observations. The first two are things we can check for. The third is something that you need
to assess yourself by asking if there are any special relationships between different observations, for
example repeated measures where the independent variable is time so there is a relationship between
the observations at time one and time two: observations at different time points are from the same
people. Additionally, if you aren’t using a saturated model (e.g., if you’ve omitted the interaction
terms) then you’re also assuming that the omitted terms aren’t important. Of course, you can check
this last one by running an ANOVA with the omitted terms included and see if they’re significant, so
that’s pretty easy. What about homogeneity of variance and normality of the residuals? As it turns
out, these are pretty easy to check. It’s no different to the checks we did for a one-way ANOVA.

13.4.1 Homogeneity of variance

As mentioned in Section 12.6.1 it’s a good idea to visually inspect a plot of the standard deviations
compared across different groups / categories, and also see if the Levene test is consistent with the
visual inspection. The theory behind the Levene test was discussed in Section 12.6.1, so I won’t
discuss it again. This test expects that you have a saturated model (i.e., including all of the relevant
terms), because the test is primarily concerned with the within-group variance, and it doesn’t really
make a lot of sense to calculate this any way other than with respect to the full model. The Levene
test can be specified under the ANOVA ‘Assumption Checks’ - ‘Homogeneity tests’ option in JASP,
with the result shown as in Figure 13.9. The fact that the Levene test is non-significant means that,
providing it is consistent with a visual inspection of the plot of standard deviations, we can safely
assume that the homogeneity of variance assumption is not violated.

13.4.2 Normality of residuals

As with one-way ANOVA we can test for the normality of residuals in a straightforward fashion (see
Section 12.6.4). Primarily though, it’s generally a good idea to examine the residuals graphically using
a QQ plot. See Figure 13.9.
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Figure 13.9: Checking assumptions in an ANOVA model
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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13.5

Analysis of Covariance (ANCOVA)

A variation in ANOVA is when you have an additional continuous variable that you think might be
related to the dependent variable. This additional variable can be added to the analysis as a covariate,
in the aptly named analysis of covariance (ANCOVA).

In ANCOVA the values of the dependent variable are “adjusted” for the influence of the covariate,
and then the “adjusted” score means are tested between groups in the usual way. This technique can
increase the precision of an experiment, and therefore provide a more “powerful” test of the equality
of group means in the dependent variable. How does ANCOVA do this? Well, although the covariate
itself is typically not of any experimental interest, adjustment for the covariate can decrease the
estimate of experimental error and thus, by reducing error variance, precision is increased. This means
that an inappropriate failure to reject the null hypothesis (false negative or type II error) is less likely.

Despite this advantage, ANCOVA runs the risk of undoing real differences between groups, and
this should be avoided. Look at Figure 13.10, for example, which shows a plot of Statistics anxiety
against age and shows two distinct groups – students who have either an Arts or Science background
or preference. ANCOVA with age as a covariate might lead to the conclusion that statistics anxiety
does not differ in the two groups. Would this conclusion be reasonable – probably not because the
ages of the two groups do not overlap and analysis of variance has essentially “extrapolated into a
region with no data” (Everitt 1996, p. 68).

Clearly, careful thought needs to be given to an analysis of covariance with distinct groups. This
applies to both one-way and factorial designs, as ANCOVA can be used with both.

13.5.1 Running ANCOVA in JASP

A health psychologist was interested in the effect of routine cycling and stress on happiness levels,
with age as a covariate. You can find the dataset in the file ancova.csv. Open this file in JASP and
then, to undertake an ANCOVA, select ‘ANOVA’ - ‘ANCOVA’ to open the ANCOVA analysis window
(Figure 13.11). Highlight the dependent variable ‘happiness’ and transfer it into the ‘Dependent
Variable’ text box. Highlight the independent variables ‘stress’ and ‘commute’ and transfer them
into the ‘Fixed Factors’ text box. Highlight the covariate ‘age’ and transfer it into the ‘Covariates’
text box. Then click on ‘Additional Options’ - ‘Marginal Means’ and transfer the interaction term
stress*commute into the action box.

An ANCOVA table is produced in the JASP results window (Figure 13.11). The F value for
the covariate ‘age’ is significant at p “ .023, suggesting that age is an important predictor of the
dependent variable happiness. When we look at the estimated marginal mean scores, adjustments
have been made (compared to an analysis without the covariate) because of the inclusion of the
covariate ‘age’ in this ANCOVA. A plot (Figure 13.12) is a good way of visualising and interpreting
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Figure 13.10: Plot of Statistics anxiety against age for two distinct groups
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the significant effects.

The F value for the main effect ‘stress’ (52.61) has an associated probability of p † .001. The
F value for the main effect ‘commute’ (42.33) has an associated probability of p † .001. Since both
of these are less than the probability that is typically used to decide if a statistical result is significant
(p † .05) we can conclude that there was a significant main effect of stress (F p1, 15q “ 52.61, p †
.001) and a significant main effect of commuting method (F p1, 15q “ 42.33, p † .001). A significant
interaction between stress and commuting method was also found (F p1, 15q “ 14.15, p “ .002).

In Figure 13.12 we can see the adjusted, marginal, mean happiness scores when age is a covariate
in an ANCOVA. In this analysis there is a significant interaction effect, whereby people with low stress
who cycle to work are happier than people with low stress who drive and people with high stress
whether they cycle or drive to work. There is also a significant main effect of stress – people with low
stress are happier than those with high stress. And there is also a significant main effect of commuting
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Figure 13.11: The JASP ANCOVA analysis window
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

behaviour – people who cycle are happier, on average, than those who drive to work.

13.6

ANOVA as a linear model

One of the most important things to understand about ANOVA and regression is that they’re basically
the same thing. On the surface of it, you maybe wouldn’t think this is true. After all, the way that I’ve
described them so far suggests that ANOVA is primarily concerned with testing for group differences,
and regression is primarily concerned with understanding the correlations between variables. And, as
far as it goes that’s perfectly true. But when you look under the hood, so to speak, the underlying
mechanics of ANOVA and regression are awfully similar. In fact, if you think about it, you’ve already
seen evidence of this. ANOVA and regression both rely heavily on sums of squares (SS), both make
use of F tests, and so on. Looking back, it’s hard to escape the feeling that Chapters 11 and 12 were
a bit repetitive.

The reason for this is that ANOVA and regression are both kinds of linear models. In the case
of regression, this is kind of obvious. The regression equation that we use to define the relationship
between predictors and outcomes is the equation for a straight line, so it’s quite obviously a linear
model, with the equation

Yp “ b0 ` b1X1p ` b2X2p ` "p
where Yp is the outcome value for the p-th observation (e.g., p-th person), X1p is the value of the first
predictor for the p-th observation, X2p is the value of the second predictor for the p-th observation,
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Figure 13.12: Plot of mean happiness level as a function of stress and commuting method
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the b0, b1, and b2 terms are our regression coefficients, and "p is the p-th residual. If we ignore the
residuals "p and just focus on the regression line itself, we get the following formula:

ˆYp “ b0 ` b1X1p ` b2X2p
where ˆYp is the value of Y that the regression line predicts for person p, as opposed to the actually-
observed value Yp. The thing that isn’t immediately obvious is that we can write ANOVA as a linear
model as well. However, it’s actually pretty straightforward to do this. Let’s start with a really simple
example, rewriting a 2ˆ 2 factorial ANOVA as a linear model.

13.6.1 Some data

To make things concrete, let’s suppose that our outcome variable is the grade that a student
receives in my class, a ratio-scale variable corresponding to a mark from 0% to 100%. There are two
predictor variables of interest: whether or not the student turned up to lectures (the attend variable)
and whether or not the student actually read the textbook (the reading variable). We’ll say that
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attend = 1 if the student attended class, and attend = 0 if they did not. Similarly, we’ll say that
reading = 1 if the student read the textbook, and reading = 0 if they did not.

Okay, so far that’s simple enough. The next thing we need to do is to wrap some maths around
this (sorry!). For the purposes of this example, let Yp denote the grade of the p-th student in the
class. This is not quite the same notation that we used earlier in this chapter. Previously, we’ve used
the notation Yrci to refer to the i-th person in the r -th group for predictor 1 (the row factor) and the
c-th group for predictor 2 (the column factor). This extended notation was really handy for describing
how the SS values are calculated, but it’s a pain in the current context, so I’ll switch notation here.
Now, the Yp notation is visually simpler than Yrci , but it has the shortcoming that it doesn’t actually
keep track of the group memberships! That is, if I told you that Y0,0,3 “ 35, you’d immediately know
that we’re talking about a student (the 3rd such student, in fact) who didn’t attend the lectures (i.e.,
attend = 0) and didn’t read the textbook (i.e. reading = 0), and who ended up failing the class
(grade = 35). But if I tell you that Yp “ 35, all you know is that the p-th student didn’t get a good
grade. We’ve lost some key information here. Of course, it doesn’t take a lot of thought to figure
out how to fix this. What we’ll do instead is introduce two new variables X1p and X2p that keep track
of this information. In the case of our hypothetical student, we know that X1p “ 0 (i.e., attend = 0)
and X2p “ 0 (i.e., reading = 0). So the data might look like this:

person, p grade, Yp attendance, X1p reading, X2p
1 90 1 1
2 87 1 1
3 75 0 1
4 60 1 0
5 35 0 0
6 50 0 0
7 65 1 0
8 70 0 1

This isn’t anything particularly special, of course. It’s exactly the format in which we expect to see
our data! See the data file rtfm.csv.

13.6.2 ANOVA with binary factors as a regression model

Okay, let’s get back to talking about the mathematics. We now have our data expressed in terms
of three numeric variables: the continuous variable Y and the two binary variables X1 and X2. What I
want you to recognise is that our 2ˆ2 factorial ANOVA is exactly equivalent to the regression model

Yp “ b0 ` b1X1p ` b2X2p ` "p

This is, of course, the exact same equation that I used earlier to describe a two-predictor regression
model! The only difference is that X1 and X2 are now binary variables (i.e., values can only be 0 or
1), whereas in a regression analysis we expect that X1 and X2 will be continuous. There’s a couple
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of ways I could try to convince you of this. One possibility would be to do a lengthy mathematical
exercise proving that the two are identical. However, I’m going to go out on a limb and guess that
most of the readership of this book will find that annoying rather than helpful. Instead, I’ll explain the
basic ideas and then rely on JASP to show that ANOVA analyses and regression analyses aren’t just
similar, they’re identical for all intents and purposes. Let’s start by running this as an ANOVA. To do
this, we’ll use the rtfm data set, and Figure 13.13 shows what we get when we run the analysis in
JASP.

Figure 13.13: ANOVA of the rtfm.csv data set in JASP, without the interaction term
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

So, by reading the key numbers off the ANOVA table and the mean scores that we presented earlier,
we can see that the students obtained a higher grade if they attended class pF1,5 “ 21.6, p “ .006q
and if they read the textbook pF1,5 “ 52.3, p † 0.001q. Let’s make a note of those p-values and
those F statistics.

Now let’s think about the same analysis from a linear regression perspective. In the rtfm data
set, we have encoded attend and reading as if they were numeric predictors. In this case, this is
perfectly acceptable. There really is a sense in which a student who turns up to class (i.e. attend =
1) has in fact done “more attendance” than a student who does not (i.e. attend = 0). So it’s not
at all unreasonable to include it as a predictor in a regression model. It’s a little unusual, because
the predictor only takes on two possible values, but it doesn’t violate any of the assumptions of linear
regression. And it’s easy to interpret. If the regression coefficient for attend is greater than 0 it means
that students that attend lectures get higher grades. If it’s less than zero then students attending
lectures get lower grades. The same is true for our reading variable.

Wait a second though. Why is this true? It’s something that is intuitively obvious to everyone who
has taken a few stats classes and is comfortable with the maths, but it isn’t clear to everyone else at
first pass. To see why this is true, it helps to look closely at a few specific students. Let’s start by
considering the 6th and 7th students in our data set (i.e. p “ 6 and p “ 7). Neither one has read the
textbook, so in both cases we can set reading = 0. Or, to say the same thing in our mathematical
notation, we observe X2,6 “ 0 and X2,7 “ 0. However, student number 7 did turn up to lectures (i.e.,
attend = 1, X1,7 “ 1) whereas student number 6 did not (i.e., attend = 0, X1,6 “ 0). Now let’s look
at what happens when we insert these numbers into the general formula for our regression line. For
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student number 6, the regression predicts that

ˆY6 “ b0 ` b1X1,6 ` b2X2,6
“ b0 ` pb1 ˆ 0q ` pb2 ˆ 0q
“ b0

So we’re expecting that this student will obtain a grade corresponding to the value of the intercept
term b0. What about student 7? This time when we insert the numbers into the formula for the
regression line, we obtain the following

ˆY7 “ b0 ` b1X1,7 ` b2X2,7
“ b0 ` pb1 ˆ 1q ` pb2 ˆ 0q
“ b0 ` b1

Because this student attended class, the predicted grade is equal to the intercept term b0 plus the
coefficient associated with the attend variable, b1. So, if b1 is greater than zero, we’re expecting that
the students who turn up to lectures will get higher grades than those students who don’t. If this
coefficient is negative we’re expecting the opposite: students who turn up at class end up performing
much worse. In fact, we can push this a little bit further. What about student number 1, who turned
up to class (X1,1 “ 1) and read the textbook (X2,1 “ 1)? If we plug these numbers into the regression
we get

ˆY1 “ b0 ` b1X1,1 ` b2X2,1
“ b0 ` pb1 ˆ 1q ` pb2 ˆ 1q
“ b0 ` b1 ` b2

So if we assume that attending class helps you get a good grade (i.e., b1 ° 0) and if we assume
that reading the textbook also helps you get a good grade (i.e., b2 ° 0), then our expectation is that
student 1 will get a grade that that is higher than student 6 and student 7.

And at this point you won’t be at all suprised to learn that the regression model predicts that
student 3, who read the book but didn’t attend lectures, will obtain a grade of b2 ` b0. I won’t
bore you with yet another regression formula. Instead, what I’ll do is show you the following table of
expected grades:

read textbook?
no yes

attended? no b0 b0 ` b2
yes b0 ` b1 b0 ` b1 ` b2

As you can see, the intercept term b0 acts like a kind of “baseline” grade that you would expect from
those students who don’t take the time to attend class or read the textbook. Similarly, b1 represents
the boost that you’re expected to get if you come to class, and b2 represents the boost that comes
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from reading the textbook. In fact, if this were an ANOVA you might very well want to characterise
b1 as the main effect of attendance, and b2 as the main effect of reading! In fact, for a simple 2ˆ 2
ANOVA that’s exactly how it plays out.

Okay, now that we’re really starting to see why ANOVA and regression are basically the same
thing, let’s actually run our regression using the rtfm data and the JASP regression analysis to
convince ourselves that this is really true. Running the regression in the usual way gives the results
shown in Figure 13.14.

Figure 13.14: Regression analysis of the rtfm.csv data set in JASP, without the interaction term
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

There’s a few interesting things to note here. First, notice that the intercept term is 43.5 which is
close to the “group” mean of 42.5 observed for those two students who didn’t read the text or attend
class. Second, notice that we have the regression coefficient of b1 “ 18.0 for the attendance variable,
suggesting that those students that attended class scored 18 points higher than those who didn’t. So
our expectation would be that those students who turned up to class but didn’t read the textbook
would obtain a grade of b0 ` b1, which is equal to 43.5 ` 18.0 “ 61.5. You can verify for yourself
that the same thing happens when we look at the students that read the textbook.

Actually, we can push a little further in establishing the equivalence of our ANOVA and our re-
gression. Look at the p-values associated with the attend variable and the reading variable in the
regression output. They’re identical to the ones we encountered earlier when running the ANOVA.
This might seem a little surprising, since the test used when running our regression model calculates a
t-statistic and the ANOVA calculates an F -statistic. However, if you can remember all the way back
to Chapter 6, I mentioned that there’s a relationship between the t-distribution and the F -distribution.
If you have some quantity that is distributed according to a t-distribution with k degrees of freedom
and you square it, then this new squared quantity follows an F -distribution whose degrees of freedom
are 1 and k . We can check this with respect to the t statistics in our regression model. For the attend
variable we get a t value of 4.65. If we square this number we end up with 21.6, which matches the
corresponding F statistic in our ANOVA.

13.6.3 Using contrasts to encode non binary factors

At this point, I’ve shown you how we can view a 2ˆ 2 ANOVA into a linear model. And it’s pretty

- 358 -



easy to see how this generalises to a 2 ˆ 2 ˆ 2 ANOVA or a 2 ˆ 2 ˆ 2 ˆ 2 ANOVA. It’s the same
thing, really. You just add a new binary variable for each of your factors. Where it begins to get
trickier is when we consider factors that have more than two levels. Consider, for instance, the 3ˆ 2
ANOVA that we ran earlier in this chapter using the clinicaltrial.csv data. How can we convert
the three-level drug factor into a numerical form that is appropriate for a regression?

The answer to this question is pretty simple, actually. All we have to do is realise that a three-level
factor can be redescribed as two binary variables. Suppose, for instance, I were to create a new binary
variable called druganxifree. Whenever the drug variable is equal to "anxifree" we set druganxifree
= 1. Otherwise, we set druganxifree = 0. This variable sets up a contrast, in this case between
anxifree and the other two drugs. By itself, of course, the druganxifree contrast isn’t enough to fully
capture all of the information in our drug variable. We need a second contrast, one that allows us to
distinguish between joyzepam and the placebo. To do this, we can create a second binary contrast,
called drugjoyzepam, which equals 1 if the drug is joyzepam and 0 if it is not. Taken together, these
two contrasts allows us to perfectly discriminate between all three possible drugs. The table below
illustrates this:

drug druganxifree drugjoyzepam
"placebo" 0 0
"anxifree" 1 0
"joyzepam" 0 1

If the drug administered to a patient is a placebo then both of the two contrast variables will equal 0.
If the drug is Anxifree then the druganxifree variable will equal 1, and drugjoyzepam will be 0. The
reverse is true for Joyzepam: drugjoyzepam is 1 and druganxifree is 0.

Creating contrast variables is not too difficult to do using JASP’s ‘Computed Column’ functionality.
For example, to create the druganxifree variable, you can use some simple R code to create the binary
variable in the formula box: ifelse(drug == ’anxifree’, 1, 0)’. Similarly, to create the new variable
drugjoyzepam use this code: ifelse(drug == ’joyzepam’, 1, 0). Likewise for therapyCBT: ifelse(therapy
== ’CBT’, 1, 0). You can see these new variables in the JASP data file clinicaltrial2.jasp. As
before, if you click on the “fx ” symbol, you will also be able to see the associated R code.

We have now recoded our three-level factor in terms of two binary variables, and we’ve already
seen that ANOVA and regression behave the same way for binary variables. However, there are some
additional complexities that arise in this case, which we’ll discuss in the next section.

13.6.4 The equivalence between ANOVA and regression for non-binary factors

Now we have two different versions of the same data set. Our original data in which the drug
variable from the clinicaltrial.csv file is expressed as a single three-level factor, and the expanded
data clinicaltrial2.omv in which it is expanded into two binary contrasts. Once again, the thing
that we want to demonstrate is that our original 3ˆ 2 factorial ANOVA is equivalent to a regression
model applied to the contrast variables. Let’s start by re-running the ANOVA, with results shown in
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Figure 13.15. Let’s remove the interaction component; remember to go to ‘Model’ and move the
drug*therapy term out of the ‘Model Terms’ box.

Figure 13.15: JASP ANOVA results, without interaction component
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Obviously, there are no surprises here. That’s the exact same ANOVA that we ran earlier. Next,
let’s run a regression using druganxifree, drugjoyzepam and CBTtherapy as the predictors. The results
are shown in Figure 13.16.

Figure 13.16: JASP regression results, with contrast variables druganxifree and drugjoyzepam
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hmm. This will look quite different than what we got last time. Not surprisingly, the regression
output prints out the results for each of the three predictors separately, just like it did every other time
we conducted a regression analysis. On the one hand we can see that the p-value for the CBTtherapy
variable is exactly the same as the one for the therapy factor in our original ANOVA, so we can be
reassured that the regression model is doing the same thing as the ANOVA did. On the other hand,
this regression model is testing the druganxifree contrast and the drugjoyzepam contrast separately,
as if they were two completely unrelated variables. It’s not surprising of course, because the poor
regression analysis has no way of knowing that drugjoyzepam and druganxifree are actually the two
different contrasts that we used to encode our three-level drug factor. As far as it knows, drugjoyzepam
and druganxifree are no more related to one another than drugjoyzepam and therapyCBT. However,
you and I know better. At this stage we’re not at all interested in determining whether these two
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contrasts are individually significant. We just want to know if there’s an “overall” effect of drug. That
is, what we want JASP to do is to run some kind of “model comparison” test, one in which the two
“drug-related” contrasts are lumped together for the purpose of the test. Sound familiar? All we need
to do is specify a “null model”, which in this case would include the CBTtherapy predictor, and omit
both of the drug-related variables, as in Figure 13.17. To do this, click the ‘Model’ button and check
‘Add to null model’ for both of the drug terms. You can then assess whether to include drug as a
predictor in the model by computing AIC for both models (see Section 11.11). Remember, smaller is
better!

13.7

Different ways to specify contrasts

In the previous section, I showed you a method for converting a factor into a collection of contrasts.
In the method I showed you we specify a set of binary variables in which we defined a table like this
one:

drug druganxifree drugjoyzepam
"placebo" 0 0
"anxifree" 1 0
"joyzepam" 0 1

Each row in the table corresponds to one of the factor levels, and each column corresponds to one
of the contrasts. This table, which always has one more row than columns, has a special name. It is
called a contrast matrix. However, there are lots of different ways to specify a contrast matrix. In this
section I discuss a few of the standard contrast matrices that statisticians use and how you can use
them in JASP. If you’re planning to read the section on unbalanced ANOVA later on (Section 13.10),
it’s worth reading this section carefully. If not, you can get away with skimming it, because the choice
of contrasts doesn’t matter much for balanced designs.

13.7.1 Treatment contrasts

In the particular kind of contrasts that I’ve described above, one level of the factor is special,
and acts as a kind of “baseline” category (i.e., placebo in our example), against which the other two
are defined. The name for these kinds of contrasts is treatment contrasts, also known as “dummy
coding”. In this contrast each level of the factor is compared to a base reference level, and the base
reference level is the value of the intercept.

The name reflects the fact that these contrasts are quite natural and sensible when one of the
categories in your factor really is special because it actually does represent a baseline. That makes
sense in our clinical trial example. The placebo condition corresponds to the situation where you don’t

- 361 -



Figure 13.17: Model comparison in JASP regression, null model 0 vs. contrasts model 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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give people any real drugs, and so it’s special. The other two conditions are defined in relation to the
placebo. In one case you replace the placebo with Anxifree, and in the other case your replace it with
Joyzepam.

The table shown above is a matrix of treatment contrasts for a factor that has 3 levels. But
suppose I want a matrix of treatment contrasts for a factor with 5 levels? You would set this out like
this:

Level 2 3 4 5
1 0 0 0 0
2 1 0 0 0
3 0 1 0 0
4 0 0 1 0
5 0 0 0 1

In this example, the first contrast is level 2 compared with level 1, the second contrast is level 3
compared with level 1, and so on. Notice that, by default, the first level of the factor is always
treated as the baseline category (i.e., it’s the one that has all zeros and doesn’t have an explicit
contrast associated with it). In JASP you can change which category is the first level of the factor by
manipulating the order of the levels of the variable shown in the ‘Data Variable’ window (double click
on the name of the variable in the spreadsheet column to bring up the ‘Data Variable’ view.

13.7.2 Helmert contrasts

Treatment contrasts are useful for a lot of situations. However, they make most sense in the
situation when there really is a baseline category, and you want to assess all the other groups in
relation to that one. In other situations, however, no such baseline category exists, and it may make
more sense to compare each group to the mean of the other groups. This is where we meet Helmert
contrasts, generated by the ‘helmert’ option in the JASP ‘ANOVA’ - ‘Contrasts’ selection box. The
idea behind Helmert contrasts is to compare each group to the mean of the “previous” ones. That
is, the first contrast represents the difference between group 2 and group 1, the second contrast
represents the difference between group 3 and the mean of groups 1 and 2, and so on. This translates
to a contrast matrix that looks like this for a factor with five levels:

1 -1 -1 -1 -1
2 1 -1 -1 -1
3 0 2 -1 -1
4 0 0 3 -1
5 0 0 0 4

One useful thing about Helmert contrasts is that every contrast sums to zero (i.e., all the columns
sum to zero). This has the consequence that, when we interpret the ANOVA as a regression, the
intercept term corresponds to the grand mean µ.. if we are using Helmert contrasts. Compare this
to treatment contrasts, in which the intercept term corresponds to the group mean for the baseline
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category. This property can be very useful in some situations. It doesn’t matter very much if you have
a balanced design, which we’ve been assuming so far, but it will turn out to be important later when
we consider unbalanced designs in Section 13.10. In fact, the main reason why I’ve even bothered to
include this section is that contrasts become important if you want to understand unbalanced ANOVA.

13.7.3 Sum to zero contrasts

The third option that I should briefly mention are “sum to zero” contrasts, called “Simple” con-
trasts in JASP, which are used to construct pairwise comparisons between groups. Specifically, each
contrast encodes the difference between one of the groups and a baseline category, which in this case
corresponds to the first group:

1 -1 -1 -1 -1
2 1 0 0 0
3 0 1 0 0
4 0 0 1 0
5 0 0 0 1

Much like Helmert contrasts, we see that each column sums to zero, which means that the intercept
term corresponds to the grand mean when ANOVA is treated as a regression model. When interpreting
these contrasts, the thing to recognise is that each of these contrasts is a pairwise comparison between
group 1 and one of the other four groups. Specifically, contrast 1 corresponds to a “group 2 minus
group 1” comparison, contrast 2 corresponds to a “group 3 minus group 1” comparison, and so on.6

13.7.4 Optional contrasts in JASP

JASP also comes with a variety of options that can generate different kinds of contrasts in ANOVA.
These can be found in the ‘Contrasts’ option in the main ANOVA analysis window, where the following
contrast types are listed:

6What’s the difference between treatment and simple contrasts, I hear you ask? Well, as a basic example consider
a gender main effect, with m=0 and f=1. The coefficient corresponding to the treatment contrast will measure the
difference in mean between females and males, and the intercept would be the mean of the males. However, with a
simple contrast, i.e., m=-1 and f=1, the intercept is the average of the means and the main effect is the difference of
each group mean from the intercept.
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Contrast type

Deviation Compares the mean of each level (except a reference cate-
gory) to the mean of all of the levels (grand mean)

Simple Like the treatment contrasts, the simple contrast compares
the mean of each level to the mean of a specified level. This
type of contrast is useful when there is a control group. By
default the first category is the reference. However, with a
simple contrast the intercept is the grand mean of all the
levels of the factors.

Difference Compares the mean of each level (except the first) to the
mean of previous levels. (Sometimes called reverse Helmert
contrasts)

Helmert Compares the mean of each level of the factor (except the
last) to the mean of subsequent levels

Repeated Compares the mean of each level (except the last) to the
mean of the subsequent level

Polynomial Compares the linear effect and quadratic effect. The first
degree of freedom contains the linear effect across all cate-
gories; the second degree of freedom, the quadratic effect.
These contrasts are often used to estimate polynomial trends

13.8

Post hoc tests

Time to switch to a different topic. Rather than pre-planned comparisons that you have tested using
contrasts, let’s suppose you’ve done your ANOVA and it turns out that you obtained some significant
effects. Because of the fact that the F -tests are “omnibus” tests that only really test the null hypothesis
that there are no differences among groups, obtaining a significant effect doesn’t tell you which groups
are different to which other ones. We discussed this issue back in Chapter 12, and in that chapter our
solution was to run t-tests for all possible pairs of groups, making corrections for multiple comparisons
(e.g., Bonferroni, Holm) to control the Type I error rate across all comparisons. The methods that
we used back in Chapter 12 have the advantage of being relatively simple and being the kind of tools
that you can use in a lot of different situations where you’re testing multiple hypotheses, but they’re
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not necessarily the best choices if you’re interested in doing efficient post hoc testing in an ANOVA
context. There are actually quite a lot of different methods for performing multiple comparisons in
the statistics literature (Hsu 1996), and it would be beyond the scope of an introductory text like this
one to discuss all of them in any detail.

That being said, there’s one tool that I do want to draw your attention to, namely Tukey’s
“Honestly Significant Difference”, or Tukey’s HSD for short. For once, I’ll spare you the formulas and
just stick to the qualitative ideas. The basic idea in Tukey’s HSD is to examine all relevant pairwise
comparisons between groups, and it’s only really appropriate to use Tukey’s HSD if it is pairwise
differences that you’re interested in.7 For instance, earlier we conducted a factorial ANOVA using the
clinicaltrial.csv data set, and where we specified a main effect for drug and a main effect of
therapy we would be interested in the following four comparisons:

• The difference in mood gain for people given Anxifree versus people given the placebo.

• The difference in mood gain for people given Joyzepam versus people given the placebo.

• The difference in mood gain for people given Anxifree versus people given Joyzepam.

• The difference in mood gain for people treated with CBT and people given no therapy.

For any one of these comparisons, we’re interested in the true difference between (population) group
means. Tukey’s HSD constructs simultaneous confidence intervals for all four of these comparisons.
What we mean by 95% “simultaneous” confidence interval is that, if we were to repeat this study many
times, then in 95% of the study results the confidence intervals would contain the relevant true value.
Moreover, we can use these confidence intervals to calculate an adjusted p value for any specific
comparison.

The TukeyHSD function in JASP is pretty easy to use. You simply specify the ANOVA model term
that you want to run the post hoc tests for. For example, if we were looking to run post hoc tests
for the main effects but not the interaction, we would open up the ‘Post Hoc Tests’ option in the
ANOVA analysis screen, move the drug and therapy variables across to the box on the right, and then
select the ‘Tukey’ checkbox in the list of possible post hoc corrections that could be applied. This,
along with the corresponding results table, is shown in Figure 13.18

The output shown in the ‘Post Hoc Tests’ results table is (I hope) pretty straightforward. The first
comparison, for example, is the Anxifree versus placebo difference, and the first part of the output
indicates that the observed difference in group means is .27. The next number is the standard error
for the difference, from which we could calculate the 95% confidence interval (you can actually display
this 95% CI if you select the ‘Confidence intervals’ box). Then there is a column with the degrees of
freedom, a column with the t-value, and finally a column with the p-value. For the first comparison

7If, for instance, you actually find yourself interested to know if Group A is significantly different from the mean of
Group B and Group C, then you need to use a different tool (e.g., Scheffe’s method, which is more conservative, and
beyond the scope of this book). However, in most cases you probably are interested in pairwise group differences, so
Tukey’s HSD is a pretty useful thing to know about.
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Figure 13.18: Tukey HSD post hoc test in JASP
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the adjusted p-value is .21. In contrast, if you look at the next line, we see that the observed difference
between joyzepam and the placebo is 1.03, and this result is significant pp † .001q.

So far, so good. What about the situation where your model includes interaction terms? For
instance, the default option in JASP is to allow for the possibility that there is an interaction between
drug and therapy. If that’s the case, the number of pairwise comparisons that we need to consider
starts to increase. As before, we need to consider the three comparisons that are relevant to the
main effect of drug and the one comparison that is relevant to the main effect of therapy. But, if we
want to consider the possibility of a significant interaction (and try to find the group differences that
underpin that significant interaction), we need to include comparisons such as the following:

• The difference in mood gain for people given Anxifree and treated with CBT, versus people given
the placebo and treated with CBT

• The difference in mood gain for people given Anxifree and given no therapy, versus people given
the placebo and given no therapy.

• etc

There are quite a lot of these comparisons that you need to consider. So, when we run the Tukey
post hoc analysis for this ANOVA model, we see that it has made a lot of pairwise comparisons (19
in total), as shown in Figure 13.19. You can see that it looks pretty similar to before, but with a lot
more comparisons made.
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Figure 13.19: Tukey HSD post hoc test in JASP factorial ANOVA with an interaction term
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13.9

The method of planned comparisons

Following on from the previous sections on contrasts and post hoc tests in ANOVA, I think the
method of planned comparisons is important enough to deserve a quick discussion. In our discussions
of multiple comparisons, in the previous section and back in Chapter 12, I’ve been assuming that the
tests you want to run are genuinely post hoc. For instance, in our drugs example above, maybe you
thought that the drugs would all have different effects on mood (i.e., you hypothesised a main effect
of drug), but you didn’t have any specific hypothesis about how they would be different, nor did you
have any real idea about which pairwise comparisons would be worth looking at. If that is the case,
then you really have to resort to something like Tukey’s HSD to do your pairwise comparisons.

The situation is rather different, however, if you genuinely did have real, specific hypotheses
about which comparisons are of interest, and you never ever have any intention to look at any other
comparisons besides the ones that you specified ahead of time. When this is true, and if you honestly
and rigorously stick to your noble intentions to not run any other comparisons (even when the data
look like they’re showing you deliciously significant effects for stuff you didn’t have a hypothesis test
for), then it doesn’t really make a lot of sense to run something like Tukey’s HSD, because it makes
corrections for a whole bunch of comparisons that you never cared about and never had any intention
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of looking at. Under those circumstances, you can safely run a (limited) number of hypothesis tests
without making an adjustment for multiple testing. This situation is known as the method of planned
comparisons, and it is sometimes used in clinical trials. However, further consideration is out of scope
for this introductory book, but at least you know that this method exists!

13.10

Factorial ANOVA 3: unbalanced designs

Factorial ANOVA is a very handy thing to know about. It’s been one of the standard tools used to
analyse experimental data for many decades, and you’ll find that you can’t read more than two or
three papers in psychology without running into an ANOVA in there somewhere. However, there’s
one huge difference between the ANOVAs that you’ll see in a lot of real scientific articles and the
ANOVAs that I’ve described so far. In in real life we’re rarely lucky enough to have perfectly balanced
designs. For one reason or another, it’s typical to end up with more observations in some cells than
in others. Or, to put it another way, we have an unbalanced design.

Unbalanced designs need to be treated with a lot more care than balanced designs, and the
statistical theory that underpins them is a lot messier. It might be a consequence of this messiness,
or it might be a shortage of time, but my experience has been that undergraduate research methods
classes in psychology have a nasty tendency to ignore this issue completely. A lot of stats textbooks
tend to gloss over it too. The net result of this, I think, is that a lot of active researchers in the field
don’t actually know that there’s several different “types” of unbalanced ANOVAs, and they produce
quite different answers. In fact, reading the psychological literature, I’m kind of amazed at the fact
that most people who report the results of an unbalanced factorial ANOVA don’t actually give you
enough details to reproduce the analysis. I secretly suspect that most people don’t even realise that
their statistical software package is making a whole lot of substantive data analysis decisions on their
behalf. It’s actually a little terrifying when you think about it. So, if you want to avoid handing control
of your data analysis to stupid software, read on.

13.10.1 The coffee data

As usual, it will help us to work with some data. The coffee.csv file contains a hypothetical data
set that produces an unbalanced 3ˆ 2 ANOVA. Suppose we were interested in finding out whether or
not the tendency of people to babble when they have too much coffee is purely an effect of the coffee
itself, or whether there’s some effect of the milk and sugar that people add to the coffee. Suppose
we took 18 people and gave them some coffee to drink. The amount of coffee / caffeine was held
constant, and we varied whether or not milk was added, so milk is a binary factor with two levels,
"yes" and "no". We also varied the kind of sugar involved. The coffee might contain "real" sugar
or it might contain "fake" sugar (i.e., artificial sweetener) or it might contain "none" at all, so the
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sugar variable is a three level factor. Our outcome variable is a continuous variable that presumably
refers to some psychologically sensible measure of the extent to which someone is “babbling”. The
details don’t really matter for our purpose. Take a look at the data in the JASP spreadsheet view, as
in Figure 13.20.

Looking at the table of means in Figure 13.20 we get a strong impression that there are differences
between the groups. This is especially true when we look at the standard deviations. Across groups,
this standard deviation varies quite a lot.8 Whilst this at first may seem like a straightforward factorial
ANOVA, a problem arises when we look at how many observations we have in each group. See the
different Ns for different groups shown in Figure 13.20. This violates one of our original assumptions,
namely that the number of people in each group is the same. We haven’t really discussed how to
handle this situation.

13.10.2 “Standard ANOVA” does not exist for unbalanced designs

Unbalanced designs lead us to the somewhat unsettling discovery that there isn’t really any one
thing that we might refer to as a standard ANOVA. In fact, it turns out that there are three funda-
mentally different ways9 in which you might want to run an ANOVA in an unbalanced design. If you
have a balanced design all three versions produce identical results, with the sums of squares, F -values,
etc., all conforming to the formulas that I gave at the start of the chapter. However, when your design
is unbalanced they don’t give the same answers. Furthermore, they are not all equally appropriate to
every situation. Some methods will be more appropriate to your situation than others. Given all this,
it’s important to understand what the different types of ANOVA are and how they differ from one
another.

The first kind of ANOVA is conventionally referred to as Type I sum of squares. I’m sure you
can guess what the other two are called. The “sum of squares” part of the name was introduced by
the SAS statistical software package and has become standard nomenclature, but it’s a bit misleading
in some ways. I think the logic for referring to them as different types of sum of squares is that,
when you look at the ANOVA tables that they produce, the key difference in the numbers is the SS
values. The degrees of freedom don’t change, the MS values are still defined as SS divided by df,
etc. However, what the terminology gets wrong is that it hides the reason why the SS values are
different from one another. To that end, it’s a lot more helpful to think of the three different kinds of

8This discrepancy in standard deviations might (and should) make you wonder if we have a violation of the homogeneity
of variance assumption. I’ll leave it as an exercise for the reader to double check this using the Levene test option.

9Actually, this is a bit of a lie. ANOVAs can vary in other ways besides the ones I’ve discussed in this book. For
instance, I’ve completely ignored the difference between fixed-effect models in which the levels of a factor are “fixed” by
the experimenter or the world, and random-effect models in which the levels are random samples from a larger population
of possible levels (this book only covers fixed-effect models). Don’t make the mistake of thinking that this book, or any
other one, will tell you “everything you need to know” about statistics, any more than a single book could possibly tell
you everything you need to know about psychology, physics or philosophy. Life is too complicated for that to ever be
true. This isn’t a cause for despair, though. Most researchers get by with a basic working knowledge of ANOVA that
doesn’t go any further than this book does. I just want you to keep in mind that this book is only the beginning of a
very long story, not the whole story.
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Figure 13.20: Descriptives for the coffee.csv data set, separately split by milk and sugar, respec-
tively.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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ANOVA as three different hypothesis testing strategies. These different strategies lead to different SS
values, to be sure, but it’s the strategy that is the important thing here, not the SS values themselves.
Recall from Section 13.6 that any particular F -test is best thought of as a comparison between two
linear models. So, when you’re looking at an ANOVA table, it helps to remember that each of those
F -tests corresponds to a pair of models that are being compared. Of course, this leads naturally to
the question of which pair of models is being compared. This is the fundamental difference between
ANOVA Types I, II and III: each one corresponds to a different way of choosing the model pairs for
the tests.

13.10.3 Type I sum of squares

The Type I method is sometimes referred to as the “sequential” sum of squares, because it involves
a process of adding terms to the model one at a time. Consider the coffee data, for instance. Suppose
we want to run the full 3ˆ2 factorial ANOVA, including interaction terms. The full model contains the
outcome variable babble, the predictor variables sugar and milk, and the interaction term sugar*milk.
This can be written as babble ~ sugar + milk + sugar*milk. The Type I strategy builds this model
up sequentially, starting from the simplest possible model and gradually adding terms.

The simplest possible model for the data would be one in which neither milk nor sugar is assumed
to have any effect on babbling. The only term that would be included in such a model is the intercept,
written as babble ~ 1. This is our initial null hypothesis. The next simplest model for the data
would be one in which only one of the two main effects is included. In the coffee data, there are two
different possible choices here, because we could choose to add milk first or to add sugar first. The
order actually turns out to matter, as we’ll see later, but for now let’s just make a choice arbitrarily
and pick sugar. So, the second model in our sequence of models is babble ~ sugar, and it forms the
alternative hypothesis for our first test. We now have our first hypothesis test:

Null model: babble ~ 1
Alternative model: babble ~ sugar

This comparison forms our hypothesis test of the main effect of sugar. The next step in our
model building exercise is to add the other main effect term, so the next model in our sequence
is babble ~ sugar + milk. The second hypothesis test is then formed by comparing the following pair
of models:

Null model: babble ~ sugar
Alternative model: babble ~ sugar + milk

This comparison forms our hypothesis test of the main effect of milk. In one sense, this approach is
very elegant: the alternative hypothesis from the first test forms the null hypothesis for the second one.
It is in this sense that the Type I method is strictly sequential. Every test builds directly on the results
of the last one. However, in another sense it’s very inelegant, because there’s a strong asymmetry
between the two tests. The test of the main effect of sugar (the first test) completely ignores milk,
whereas the test of the main effect of milk (the second test) does take sugar into account. In any
case, the fourth model in our sequence is now the full model, babble ~ sugar + milk + sugar*milk,
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and the corresponding hypothesis test is:

Null model: babble ~ sugar + milk
Alternative model: babble ~ sugar + milk + sugar*milk

Type III sum of squares is the default hypothesis testing method used by JASP ANOVA, so to run
a Type I sum of squares analysis we have to select ‘Type 1’ in the ‘Sum of squares’ selection box in
the JASP ‘ANOVA’ - ‘Model’ options. This gives us the ANOVA table shown in Figure 13.21.

Figure 13.21: ANOVA results table using Type I sum of squares in JASP
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The big problem with using Type I sum of squares is the fact that it really does depend on the
order in which you enter the variables. Yet, in many situations the researcher has no reason to prefer
one ordering over another. This is presumably the case for our milk and sugar problem. Should we
add milk first or sugar first? It feels exactly as arbitrary as a data analysis question as it does as a
coffee-making question. There may in fact be some people with firm opinions about ordering, but it’s
hard to imagine a principled answer to the question. Yet, look what happens when we change the
ordering, as in Figure 13.22.

The p-values for both main effect terms have changed, and fairly dramatically. Among other things,
the effect of milk has become significant (though one should avoid drawing any strong conclusions
about this, as I’ve mentioned previously). Which of these two ANOVAs should one report? It’s not
immediately obvious.

When you look at the hypothesis tests that are used to define the “first” main effect and the
“second” one, it’s clear that they’re qualitatively different from one another. In our initial example, we
saw that the test for the main effect of sugar completely ignores milk, whereas the test of the main
effect of milk does take sugar into account. As such, the Type I testing strategy really does treat
the first main effect as if it had a kind of theoretical primacy over the second one. In my experience
there is very rarely if ever any theoretically primacy of this kind that would justify treating any two
main effects asymmetrically.
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Figure 13.22: ANOVA results table using Type I sum of squares in JASP, but with factors entered in
a different order (milk first)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The consequence of all this is that Type I tests are very rarely of much interest, and so we should
move on to discuss Type II tests and Type III tests.

13.10.4 Type III sum of squares

Having just finished talking about Type I tests, you might think that the natural thing to do next
would be to talk about Type II tests. However, I think it’s actually a bit more natural to discuss Type
III tests (which are simple and the default in JASP) before talking about Type II tests (which are
trickier). The basic idea behind Type III tests is extremely simple. Regardless of which term you’re
trying to evaluate, run the F -test in which the alternative hypothesis corresponds to the full ANOVA
model as specified by the user, and the null model just deletes that one term that you’re testing. For
instance, in the coffee example, in which our full model was babble ~ sugar + milk + sugar*milk,
the test for a main effect of sugar would correspond to a comparison between the following two
models:

Null model: babble ~ milk + sugar*milk
Alternative model: babble ~ sugar + milk + sugar*milk

Similarly the main effect of milk is evaluated by testing the full model against a null model that
removes the milk term, like so:

Null model: babble ~ sugar + sugar*milk
Alternative model: babble ~ sugar + milk + sugar*milk

Finally, the interaction term sugar*milk is evaluated in exactly the same way. Once again, we test
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the full model against a null model that removes the sugar*milk interaction term, like so:

Null model: babble ~ sugar + milk
Alternative model: babble ~ sugar + milk + sugar*milk

The basic idea generalises to higher order ANOVAs. For instance, suppose that we were trying to run
an ANOVA with three factors, A, B and C, and we wanted to consider all possible main effects and all
possible interactions, including the three way interaction A*B*C. The table below shows you what the
Type III tests look like for this situation:

Term being
tested is

Null model is outcome ~ ... Alternative model is outcome ~ ...

A B + C + A*B + A*C + B*C + A*B*C A + B + C + A*B + A*C + B*C + A*B*C
B A + C + A*B + A*C + B*C + A*B*C A + B + C + A*B + A*C + B*C + A*B*C
C A + B + A*B + A*C + B*C + A*B*C A + B + C + A*B + A*C + B*C + A*B*C
A*B A + B + C + A*C + B*C + A*B*C A + B + C + A*B + A*C + B*C + A*B*C
A*C A + B + C + A*B + B*C + A*B*C A + B + C + A*B + A*C + B*C + A*B*C
B*C A + B + C + A*B + A*C + A*B*C A + B + C + A*B + A*C + B*C + A*B*C
A*B*C A + B + C + A*B + A*C + B*C A + B + C + A*B + A*C + B*C + A*B*C

As ugly as that table looks, it’s pretty simple. In all cases, the alternative hypothesis corresponds to
the full model which contains three main effect terms (e.g. A), three two-way interactions (e.g. A*B)
and one three-way interaction (i.e., A*B*C). The null model always contains 6 of these 7 terms, and
the missing one is the one whose significance we’re trying to test.

At first pass, Type III tests seem like a nice idea. Firstly, we’ve removed the asymmetry that
caused us to have problems when running Type I tests. And because we’re now treating all terms
the same way, the results of the hypothesis tests do not depend on the order in which we specify
them. This is definitely a good thing. However, there is a big problem when interpreting the results
of the tests, especially for main effect terms. Consider the coffee data. Suppose it turns out that the
main effect of milk is not significant according to the Type III tests. What this is telling us is that
babble ~ sugar + sugar*milk is a better model for the data than the full model. But what does that
even mean? If the interaction term sugar*milk was also non-significant, we’d be tempted to conclude
that the data are telling us that the only thing that matters is sugar. But suppose we have a significant
interaction term, but a non-significant main effect of milk. In this case, are we to assume that there
really is an “effect of sugar”, an “interaction between milk and sugar”, but no “effect of milk”? That
seems crazy. The right answer simply must be that it’s meaningless10 to talk about the main effect if
the interaction is significant. In general, this seems to be what most statisticians advise us to do, and
I think that’s the right advice. But if it really is meaningless to talk about non-significant main effects
in the presence of a significant interaction, then it’s not at all obvious why Type III tests should allow
the null hypothesis to rely on a model that includes the interaction but omits one of the main effects
that make it up. When characterised in this fashion, the null hypotheses really don’t make much sense
at all.

10Or, at the very least, rarely of interest.
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Later on, we’ll see that Type III tests can be redeemed in some contexts, but first let’s take a look
at the ANOVA results table using Type III sum of squares, see Figure 13.23.

Figure 13.23: ANOVA results table using Type III sum of squares in JASP
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

But be aware, one of the perverse features of the Type III testing strategy is that typically the
results turn out to depend on the contrasts that you use to encode your factors (see Section 13.7 if
you’ve forgotten what the different types of contrasts are).11

Okay, so if the p-values that typically come out of Type III analyses are so sensitive to the choice of
contrasts, does that mean that Type III tests are essentially arbitrary and not to be trusted? To some
extent that’s true, and when we turn to a discussion of Type II tests we’ll see that Type II analyses
avoid this arbitrariness entirely, but I think that’s too strong a conclusion. Firstly, it’s important to
recognise that some choices of contrasts will always produce the same answers (ah, so this is what is
happening in JASP). Of particular importance is the fact that if the columns of our contrast matrix
are all constrained to sum to zero, then the Type III analysis will always give the same answers.

13.10.5 Type II sum of squares

Okay, so we’ve seen Type I and III tests now, and both are pretty straightforward. Type I tests are
performed by gradually adding terms one at a time, whereas Type III tests are performed by taking
the full model and looking to see what happens when you remove each term. However, both can have
some limitations. Type I tests are dependent on the order in which you enter the terms, and Type III
tests are dependent on how you code up your contrasts. Type II tests are a little harder to describe,
but they avoid both of these problems, and as a result they are a little easier to interpret.

11However, in JASP the results for Type III sum of squares ANOVA are the same regardless of the contrast selected,
so JASP is obviously doing something different!
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Type II tests are broadly similar to Type III tests. Start with a “full” model, and test a particular
term by deleting it from that model. However, Type II tests are based on the marginality principle
which states that you should not omit a lower order term from your model if there are any higher
order ones that depend on it. So, for instance, if your model contains the two-way interaction A*B (a
2nd order term), then it really ought to contain the main effects A and B (1st order terms). Similarly,
if it contains a three-way interaction term A*B*C, then the model must also include the main effects
A, B and C as well as the simpler interactions A*B, A*C and B*C. Type III tests routinely violate the
marginality principle. For instance, consider the test of the main effect of A in the context of a
three-way ANOVA that includes all possible interaction terms. According to Type III tests, our null
and alternative models are:

Null model: outcome ~ B + C + A*B + A*C + B*C + A*B*C
Alternative model: outcome ~ A + B + C + A*B + A*C + B*C + A*B*C

Notice that the null hypothesis omits A, but includes A*B, A*C and A*B*C as part of the model.
This, according to the Type II tests, is not a good choice of null hypothesis. What we should do
instead, if we want to test the null hypothesis that A is not relevant to our outcome, is to specify the
null hypothesis that is the most complicated model that does not rely on A in any form, even as an
interaction. The alternative hypothesis corresponds to this null model plus a main effect term of A.
This is a lot closer to what most people would intuitively think of as a “main effect of A”, and it yields
the following as our Type II test of the main effect of A:12

Null model: outcome ~ B + C + B*C
Alternative model: outcome ~ A + B + C + B*C

Anyway, just to give you a sense of how the Type II tests play out, here’s the full table of tests that
would be applied in a three-way factorial ANOVA:

Term being
tested is

Null model is outcome ~ ... Alternative model is outcome ~ ...

A B + C + B*C A + B + C + B*C
B A + C + A*C A + B + C + A*C
C A + B + A*B A + B + C + A*B
A*B A + B + C + A*C + B*C A + B + C + A*B + A*C + B*C
A*C A + B + C + A*B + B*C A + B + C + A*B + A*C + B*C
B*C A + B + C + A*B + A*C A + B + C + A*B + A*C + B*C
A*B*C A + B + C + A*B + A*C + B*C A + B + C + A*B + A*C + B*C + A*B*C

In the context of the two way ANOVA that we’ve been using in the coffee data, the hypothesis tests
12Note, of course, that this does depend on the model that the user specified. If the original ANOVA model doesn’t

contain an interaction term for B*C, then obviously it won’t appear in either the null or the alternative. But that’s true
for Types I, II and III. They never include any terms that you didn’t include, but they make different choices about how
to construct tests for the ones that you did include.
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are even simpler. The main effect of sugar corresponds to an F -test comparing these two models:

Null model: babble ~ milk
Alternative model: babble ~ sugar + milk

The test for the main effect of milk is

Null model: babble ~ sugar
Alternative model: babble ~ sugar + milk

Finally, the test for the interaction sugar*milk is:

Null model: babble ~ sugar + milk
Alternative model: babble ~ sugar + milk + sugar*milk

Running the tests are again straightforward. Just select ‘Type 2’ in the ‘Sum of squares’ selection
box in the JASP ‘ANOVA’ - ‘Model’ options, This gives us the ANOVA table shown in Figure 13.24.

Figure 13.24: ANOVA results table using Type II sum of squares in JASP
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Type II tests have some clear advantages over Type I and Type III tests. They don’t depend on
the order in which you specify factors (unlike Type I), and they don’t depend on the contrasts that
you use to specify your factors (unlike Type III). And although opinions may differ on this last point,
and it will definitely depend on what you’re trying to do with your data, I do think that the hypothesis
tests that they specify are more likely to correspond to something that you actually care about. As
a consequence, I find that it’s usually easier to interpret the results of a Type II test than the results
of a Type I or Type III test. For this reason my tentative advice is that, if you can’t think of any
obvious model comparisons that directly map onto your research questions but you still want to run
an ANOVA in an unbalanced design, Type II tests are probably a better choice than Type I or Type
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III.13

13.10.6 Effect sizes (and non-additive sums of squares)

JASP also provides the effect sizes ⌘2 and partial ⌘2 when you select these options. However,
when you’ve got an unbalanced design there’s a bit of extra complexity involved.

If you remember back to our very early discussions of ANOVA, one of the key ideas behind the
sums of squares calculations is that if we add up all the SS terms associated with the effects in the
model, and add that to the residual SS, they’re supposed to add up to the total sum of squares. And,
on top of that, the whole idea behind ⌘2 is that, because you’re dividing one of the SS terms by
the total SS value, an ⌘2 value can be interpreted as the proportion of variance accounted for by a
particular term. But this is not so straightforward in unbalanced designs because some of the variance
goes “missing”.

This seems a bit odd at first, but here’s why. When you have unbalanced designs your factors
become correlated with one another, and it becomes difficult to tell the difference between the effect
of Factor A and the effect of Factor B. In the extreme case, suppose that we’d run a 2ˆ 2 design in
which the number of participants in each group had been as follows:

sugar no sugar
milk 100 0
no milk 0 100

Here we have a spectacularly unbalanced design: 100 people have milk and sugar, 100 people have
no milk and no sugar, and that’s all. There are 0 people with milk and no sugar, and 0 people with
sugar but no milk. Now suppose that, when we collected the data, it turned out there is a large (and
statistically significant) difference between the “milk and sugar” group and the “no-milk and no-sugar”
group. Is this a main effect of sugar? A main effect of milk? Or an interaction? It’s impossible to
tell, because the presence of sugar has a perfect association with the presence of milk. Now suppose
the design had been a little more balanced:

sugar no sugar
milk 100 5
no milk 5 100

13I find it amusing to note that the default in R is Type I and the default in SPSS, JASP, and jamovi is Type III. Neither
of these appeals to me all that much. Relatedly, I find it depressing that almost nobody in the psychological literature
ever bothers to report which Type of tests they ran, much less the order of variables (for Type I) or the contrasts used
(for Type III). Often they don’t report what software they used either. The only way I can ever make any sense of what
people typically report is to try to guess from auxiliary cues which software they were using, and to assume that they
never changed the default settings. Please don’t do this! Now that you know about these issues make sure you indicate
what software you used, and if you’re reporting ANOVA results for unbalanced data, then specify what Type of tests you
ran, specify order information if you’ve done Type I tests and specify contrasts if you’ve done Type III tests. Or, even
better, do hypotheses tests that correspond to things you really care about and then report those!
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This time around, it’s technically possible to distinguish between the effect of milk and the effect of
sugar, because we have a few people that have one but not the other. However, it will still be pretty
difficult to do so, because the association between sugar and milk is still extremely strong, and there
are so few observations in two of the groups. Again, we’re very likely to be in the situation where
we know that the predictor variables (milk and sugar) are related to the outcome (babbling), but we
don’t know if the nature of that relationship is a main effect of one or the other predictor, or the
interaction.

This uncertainty is the reason for the missing variance. The “missing” variance corresponds to
variation in the outcome variable that is clearly attributable to the predictors, but we don’t know
which of the effects in the model is responsible. When you calculate Type I sum of squares, no
variance ever goes missing. The sequential nature of Type I sum of squares means that the ANOVA
automatically attributes this variance to whichever effects are entered first. However, the Type II and
Type III tests are more conservative. Variance that cannot be clearly attributed to a specific effect
doesn’t get attributed to any of them, and it goes missing.

13.11

Summary

• Factorial ANOVA with balanced designs, without interactions (Section 13.1) and with interac-
tions included (Section 13.2)
• Effect size, estimated means, and confidence intervals in a factorial ANOVA (Section 13.3)
• Checking assumptions in ANOVA (Section 13.4)
• Analysis of Covariance (ANCOVA) (Section 13.5)
• Understanding the linear model underlying ANOVA, including different contrasts (Section 13.6

and 13.7)
• Post hoc testing using Tukey’s HSD (Section 13.8) and a brief commentary on planned com-

parisons (Section 13.9)
• Factorial ANOVA with unbalanced designs (Section 13.10)
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